A novel measure of dietary change in a prostate cancer dietary program incorporating mindfulness training

Author(s): Carmody JF,Olendzki BC, Merriam PA, Liu Q, Qiao Y, et al.

Abstract

Diet may represent a modifiable prostate cancer risk factor, but a vegetable-based prostate-healthy diet is a major change for most men. We used a ratio of animal to vegetable proteins (A:V) to evaluate whether a comprehensive dietary change was self-sustaining following completion of 11 weekly dietary and cooking classes that integrated mindfulness training. Thirty-six men with recurring prostate cancer were randomized to the intervention or wait-list control. Assessments were at baseline, 3 months, and 6 months. Of 17 men randomized to the intervention, 14 completed the requirements. Nineteen were randomized to control and 17 completed requirements. Compared with controls, a significant postintervention (3 months) decrease in A:V in the intervention group (P=0.01) was self-maintained 3 months postintervention (P=0.049). At each assessment, A:V was correlated with lycopene, fiber, saturated fat, and dietary cholesterol, four dietary components linked to clinically relevant outcomes in prostate cancer. Change in A:V was also significantly correlated with changes in fiber, saturated fat, and dietary cholesterol intake. Participants reported regular mindfulness training practice, and there was a significant correlation between mindfulness training practice and changes in both initiation and maintenance of the change in A:V. These pilot results provide encouraging evidence for the feasibility of a dietary program that includes mindfulness training in supporting dietary change for men with recurrent prostate cancer and invite further study to explore the possible role of mindfulness training as a means of supporting both initiation of dietary changes and maintenance of those changes over time.

Similar Articles

Role of lycopene and tomato products in prostate health

Author(s): Stacewicz-Sapuntzakis M, Bowen PE

Plant extracts: sense or nonsense?CurrOpinUrol 18: 16-20

Author(s): Madersbacher S, Berger I, Ponholzer A, Marszalek M

Lycopene inhibits the growth of normal human prostate epithelial cells in vitro

Author(s): Obermüller-Jevic UC,Olano-Martin E, Corbacho AM, Eiserich JP, van der Vliet A, et al.

Lycopene reduced gene expression of steroid targets and inflammatory markers in normal rat prostate

Author(s): Herzog A, Siler U, Spitzer V, Seifert N, Denelavas A, et al.

Lycopene inhibits disease progression in patients with benign prostate hyperplasia

Author(s): Schwarz S,Obermüller-Jevic UC, Hellmis E, Koch W, Jacobi G, et al.

Diet adherence dynamics and physiological responses to a tomato product whole-food intervention in African-American men

Author(s): Park E,Stacewicz-Sapuntzakis M, Sharifi R, Wu Z, Freeman VL, et al.

Lycopene and prostate cancer

Author(s): Barber NJ, Barber J

Tomatoes, lycopene, and prostate cancer: progress and promise

Author(s): Hadley CW, Miller EC, Schwartz SJ, Clinton SK

A food-based formulation provides lycopene with the same bioavailability to humans as that from tomato paste

Author(s): Richelle M,Bortlik K, Liardet S, Hager C, Lambelet P, et al.

A physiological pharmacokinetic model describing the disposition of lycopene in healthy men

Author(s): Diwadkar-Navsariwala V, Novotny JA, Gustin DM, Sosman JA, Rodvold KA, et al.

Combinations of tomato and broccoli enhance antitumor activity in dunning r3327-h prostate adenocarcinomas

Author(s): Canene-Adams K,Lindshield BL, Wang S, Jeffery EH, Clinton SK, et al.

Combined lycopene and vitamin E treatment suppresses the growth of PC-346C human prostate cancer cells in nude mice

Author(s): Limpens J,Schröder FH, de Ridder CM, Bolder CA, Wildhagen MF, et al.

Chemoprevention of prostate cancer with lycopene in the TRAMP model

Author(s): Konijeti R, Henning S, Moro A, Sheikh A, Elashoff D, et al.

Antioxidants block prostate cancer in lady transgenic mice

Author(s): Venkateswaran V,Fleshner NE, Sugar LM, Klotz LH

Nutritional supplements, COX-2 and IGF-1 expression in men on active surveillance for prostate cancer

Author(s): Chan JM, Weinberg V, Magbanua MJ, Sosa E, Simko J, et al.

Lycopene effects on rat normal prostate and prostate tumor tissue

Author(s): Siler U, Herzog A, Spitzer V, Seifert N, Denelavas A, et al.

Effects of lycopene on protein expression in human primary prostatic epithelial cells

Author(s): Qiu X, Yuan Y, Vaishnav A, Tessel MA, Nonn L, et al.

Effect of lycopene on cell viability and cell cycle progression in human cancer cell lines

Author(s): Teodoro AJ, Oliveira FL, Martins NB, Maia Gde A, Martucci RB, et al.

A prospective study of lycopene and tomato product intake and risk of prostate cancer

Author(s): Kirsh VA,Mayne ST, Peters U, Chatterjee N, Leitzmann MF, et al.

Lycopene for the prevention of prostate cancer

Author(s): Ilic D, Forbes KM, Hassed C

A randomized trial of lycopene supplementation in Tobago men with high prostate cancer risk

Author(s): Bunker CH, McDonald AC, Evans RW, de la Rosa N, Boumosleh JM, et al.

Tomato sauce supplementation and prostate cancer: lycopene accumulation and modulation of biomarkers of carcinogenesis

Author(s): Bowen P, Chen L, Stacewicz-Sapuntzakis M, Duncan C, Sharifi R, et al.

Serenoarepens, lycopene and selenium versus tamsulosin for the treatment of LUTS/BPH

Author(s): Morgia G, Russo GI, Voce S, Palmieri F, Gentile M, et al.