Chemoprevention of prostate cancer with lycopene in the TRAMP model

Author(s): Konijeti R, Henning S, Moro A, Sheikh A, Elashoff D, et al.

Abstract

Background:Dietary lycopene combined with other constituents from whole tomatoes was previously found to have greater chemopreventive effects against prostate cancer as compared to pure lycopene provided in a beadlet formulation. We hypothesized that tomato paste would have greater chemopreventive effects in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice relative to equivalent lycopene doses provided from lycopene beadlets.

Methods:Fifty-nine TRAMP mice were randomized to a control diet or to diets providing 28 mg lycopene per kg diet from tomato paste (TP) or from lycopene beadlet (LB), and sacrificed at 20 weeks. Prostate histopathology, prostate weight and serum levels of IGF-I and IGF binding protein-3 were evaluated.

Results:The incidence of prostate cancer was significantly decreased in the LB group relative to the control group (60% vs. 95%, respectively, P = 0.0197) whereas the difference between the TP and control groups was not statistically significant (80% vs. 95%, P = 0.34). There was no difference in prostate weights between the groups. Total lycopene levels in the serum and prostate tissue were similarly elevated in the LB and TP groups relative to the control group. The ratio of 5-cis-lycopene to trans-lycopene in the serum was significantly greater in the LB group relative to the TP group (P = 0.0001). Oxidative DNA damage was significantly reduced in the livers of mice fed LB and TP diets relative to the control group.

Conclusions:This preclinical trial suggests significant chemopreventive activity with a lycopene beadlet-enriched diet. The chemopreventive effects of lycopene from beadlets versus whole tomato products requires further testing in preclinical and clinical models of prostate cancer.

Similar Articles

Role of lycopene and tomato products in prostate health

Author(s): Stacewicz-Sapuntzakis M, Bowen PE

Plant extracts: sense or nonsense?CurrOpinUrol 18: 16-20

Author(s): Madersbacher S, Berger I, Ponholzer A, Marszalek M

Lycopene inhibits the growth of normal human prostate epithelial cells in vitro

Author(s): Obermüller-Jevic UC,Olano-Martin E, Corbacho AM, Eiserich JP, van der Vliet A, et al.

Lycopene reduced gene expression of steroid targets and inflammatory markers in normal rat prostate

Author(s): Herzog A, Siler U, Spitzer V, Seifert N, Denelavas A, et al.

Lycopene inhibits disease progression in patients with benign prostate hyperplasia

Author(s): Schwarz S,Obermüller-Jevic UC, Hellmis E, Koch W, Jacobi G, et al.

Diet adherence dynamics and physiological responses to a tomato product whole-food intervention in African-American men

Author(s): Park E,Stacewicz-Sapuntzakis M, Sharifi R, Wu Z, Freeman VL, et al.

Lycopene and prostate cancer

Author(s): Barber NJ, Barber J

Tomatoes, lycopene, and prostate cancer: progress and promise

Author(s): Hadley CW, Miller EC, Schwartz SJ, Clinton SK

A food-based formulation provides lycopene with the same bioavailability to humans as that from tomato paste

Author(s): Richelle M,Bortlik K, Liardet S, Hager C, Lambelet P, et al.

A physiological pharmacokinetic model describing the disposition of lycopene in healthy men

Author(s): Diwadkar-Navsariwala V, Novotny JA, Gustin DM, Sosman JA, Rodvold KA, et al.

Combinations of tomato and broccoli enhance antitumor activity in dunning r3327-h prostate adenocarcinomas

Author(s): Canene-Adams K,Lindshield BL, Wang S, Jeffery EH, Clinton SK, et al.

Combined lycopene and vitamin E treatment suppresses the growth of PC-346C human prostate cancer cells in nude mice

Author(s): Limpens J,Schröder FH, de Ridder CM, Bolder CA, Wildhagen MF, et al.

Antioxidants block prostate cancer in lady transgenic mice

Author(s): Venkateswaran V,Fleshner NE, Sugar LM, Klotz LH

Nutritional supplements, COX-2 and IGF-1 expression in men on active surveillance for prostate cancer

Author(s): Chan JM, Weinberg V, Magbanua MJ, Sosa E, Simko J, et al.

Lycopene effects on rat normal prostate and prostate tumor tissue

Author(s): Siler U, Herzog A, Spitzer V, Seifert N, Denelavas A, et al.

Effects of lycopene on protein expression in human primary prostatic epithelial cells

Author(s): Qiu X, Yuan Y, Vaishnav A, Tessel MA, Nonn L, et al.

Effect of lycopene on cell viability and cell cycle progression in human cancer cell lines

Author(s): Teodoro AJ, Oliveira FL, Martins NB, Maia Gde A, Martucci RB, et al.

A prospective study of lycopene and tomato product intake and risk of prostate cancer

Author(s): Kirsh VA,Mayne ST, Peters U, Chatterjee N, Leitzmann MF, et al.

Lycopene for the prevention of prostate cancer

Author(s): Ilic D, Forbes KM, Hassed C

A randomized trial of lycopene supplementation in Tobago men with high prostate cancer risk

Author(s): Bunker CH, McDonald AC, Evans RW, de la Rosa N, Boumosleh JM, et al.

Tomato sauce supplementation and prostate cancer: lycopene accumulation and modulation of biomarkers of carcinogenesis

Author(s): Bowen P, Chen L, Stacewicz-Sapuntzakis M, Duncan C, Sharifi R, et al.

Serenoarepens, lycopene and selenium versus tamsulosin for the treatment of LUTS/BPH

Author(s): Morgia G, Russo GI, Voce S, Palmieri F, Gentile M, et al.