Diet adherence dynamics and physiological responses to a tomato product whole-food intervention in African-American men

Author(s): Park E,Stacewicz-Sapuntzakis M, Sharifi R, Wu Z, Freeman VL, et al.

Abstract

Tomatoes may have beneficial effects on prostate health. Efficacy trials would require long-term adherence to high levels of tomato product (TP) consumption. Therefore, factors that affect adherence in men most at risk and whether increased consumption of TP negatively affects diet and health are important concerns. Cancer-free African–American (AA) men (n 36) with mean serum prostate-specific antigen of 7.4 SD 5.6) ng/ml were randomised to consume one serving of TP/d or a control diet for 3 months. Mean intervention group lycopene intake rose to 464%, with negligible control group increase. Plasma lycopene levels rose by 53 and 40% in the intervention group in months 1 and 3, respectively (P < 0.0001), with no control group change. The intervention group’s barriers to adherence score was inversely associated with both dietary (r -0.49, P = 0.02) and plasma lycopene concentration (r -0.37, P = 0.02). Their TP disadvantage score negatively correlated with the 3-month plasma lycopene concentrations (r -0.37, P = 0.008) and their weekly incentives and impediments were remarkably stable, ‘concern for prostate health’ being the most consistent over time. ‘Liking tomatoes’ and ‘study participation’ decreased in citation frequency at weeks 6 and 9, respectively. No major shifts occurred in dietary cholesterol or saturated fat, with no adverse effects on gastrointestinal complaints, serum total cholesterol, body weight or blood pressure. Lower socio-economic status AA men at higher prostate cancer risk can successfully achieve a whole food intervention goal with a corresponding rise in plasma lycopene concentrations, with no adverse effects on self-selected diet quality or health parameters.

Similar Articles

Role of lycopene and tomato products in prostate health

Author(s): Stacewicz-Sapuntzakis M, Bowen PE

Plant extracts: sense or nonsense?CurrOpinUrol 18: 16-20

Author(s): Madersbacher S, Berger I, Ponholzer A, Marszalek M

Lycopene inhibits the growth of normal human prostate epithelial cells in vitro

Author(s): Obermüller-Jevic UC,Olano-Martin E, Corbacho AM, Eiserich JP, van der Vliet A, et al.

Lycopene reduced gene expression of steroid targets and inflammatory markers in normal rat prostate

Author(s): Herzog A, Siler U, Spitzer V, Seifert N, Denelavas A, et al.

Lycopene inhibits disease progression in patients with benign prostate hyperplasia

Author(s): Schwarz S,Obermüller-Jevic UC, Hellmis E, Koch W, Jacobi G, et al.

Lycopene and prostate cancer

Author(s): Barber NJ, Barber J

Tomatoes, lycopene, and prostate cancer: progress and promise

Author(s): Hadley CW, Miller EC, Schwartz SJ, Clinton SK

A food-based formulation provides lycopene with the same bioavailability to humans as that from tomato paste

Author(s): Richelle M,Bortlik K, Liardet S, Hager C, Lambelet P, et al.

A physiological pharmacokinetic model describing the disposition of lycopene in healthy men

Author(s): Diwadkar-Navsariwala V, Novotny JA, Gustin DM, Sosman JA, Rodvold KA, et al.

Combinations of tomato and broccoli enhance antitumor activity in dunning r3327-h prostate adenocarcinomas

Author(s): Canene-Adams K,Lindshield BL, Wang S, Jeffery EH, Clinton SK, et al.

Combined lycopene and vitamin E treatment suppresses the growth of PC-346C human prostate cancer cells in nude mice

Author(s): Limpens J,Schröder FH, de Ridder CM, Bolder CA, Wildhagen MF, et al.

Chemoprevention of prostate cancer with lycopene in the TRAMP model

Author(s): Konijeti R, Henning S, Moro A, Sheikh A, Elashoff D, et al.

Antioxidants block prostate cancer in lady transgenic mice

Author(s): Venkateswaran V,Fleshner NE, Sugar LM, Klotz LH

Nutritional supplements, COX-2 and IGF-1 expression in men on active surveillance for prostate cancer

Author(s): Chan JM, Weinberg V, Magbanua MJ, Sosa E, Simko J, et al.

Lycopene effects on rat normal prostate and prostate tumor tissue

Author(s): Siler U, Herzog A, Spitzer V, Seifert N, Denelavas A, et al.

Effects of lycopene on protein expression in human primary prostatic epithelial cells

Author(s): Qiu X, Yuan Y, Vaishnav A, Tessel MA, Nonn L, et al.

Effect of lycopene on cell viability and cell cycle progression in human cancer cell lines

Author(s): Teodoro AJ, Oliveira FL, Martins NB, Maia Gde A, Martucci RB, et al.

A prospective study of lycopene and tomato product intake and risk of prostate cancer

Author(s): Kirsh VA,Mayne ST, Peters U, Chatterjee N, Leitzmann MF, et al.

Lycopene for the prevention of prostate cancer

Author(s): Ilic D, Forbes KM, Hassed C

A randomized trial of lycopene supplementation in Tobago men with high prostate cancer risk

Author(s): Bunker CH, McDonald AC, Evans RW, de la Rosa N, Boumosleh JM, et al.

Tomato sauce supplementation and prostate cancer: lycopene accumulation and modulation of biomarkers of carcinogenesis

Author(s): Bowen P, Chen L, Stacewicz-Sapuntzakis M, Duncan C, Sharifi R, et al.

Serenoarepens, lycopene and selenium versus tamsulosin for the treatment of LUTS/BPH

Author(s): Morgia G, Russo GI, Voce S, Palmieri F, Gentile M, et al.