Lycopene inhibits the growth of normal human prostate epithelial cells in vitro

Author(s): Obermüller-Jevic UC,Olano-Martin E, Corbacho AM, Eiserich JP, van der Vliet A, et al.

Abstract

Lycopene has repeatedly been shown to inhibit the growth of human prostate cells in vitro. However, previous studies with lycopene have focused on cancer specimens, and it is still unclear whether this carotenoid affects the growth of normal human prostate cells as well. Therefore, we investigated the effects of lycopene on normal human prostate epithelial cells (PrEC) by treating them with synthetic all-E-lycopene (up to 5 micromol/L) and assessing proliferation via [3H]thymidine incorporation. The effects of lycopene on cell cycle progression were investigated via flow cytometry. To elucidate whether lycopene modulates cyclins involved in cell cycle progression, protein expressions of cyclins D1 and E were analyzed. The results show that lycopene significantly inhibited the growth of PrEC in a dose-dependent fashion. Flow cytometry revealed a significant cell cycle arrest in the G0/G1 phase. This effect was confirmed by inhibition of cyclin D1 protein expression, whereas cyclin E levels remained unchanged. The results demonstrate that lycopene inhibits growth of nonneoplastic PrEC in vitro. We hypothesize that lycopene might likewise inhibit the growth of prostatic epithelial cells in vivo. This might have an effect on prostate development and/or on enlargement of prostate tissue as found in benign prostate hyperplasia, a potential precursor of prostate cancer.

Similar Articles

Role of lycopene and tomato products in prostate health

Author(s): Stacewicz-Sapuntzakis M, Bowen PE

Plant extracts: sense or nonsense?CurrOpinUrol 18: 16-20

Author(s): Madersbacher S, Berger I, Ponholzer A, Marszalek M

Lycopene reduced gene expression of steroid targets and inflammatory markers in normal rat prostate

Author(s): Herzog A, Siler U, Spitzer V, Seifert N, Denelavas A, et al.

Lycopene inhibits disease progression in patients with benign prostate hyperplasia

Author(s): Schwarz S,Obermüller-Jevic UC, Hellmis E, Koch W, Jacobi G, et al.

Diet adherence dynamics and physiological responses to a tomato product whole-food intervention in African-American men

Author(s): Park E,Stacewicz-Sapuntzakis M, Sharifi R, Wu Z, Freeman VL, et al.

Lycopene and prostate cancer

Author(s): Barber NJ, Barber J

Tomatoes, lycopene, and prostate cancer: progress and promise

Author(s): Hadley CW, Miller EC, Schwartz SJ, Clinton SK

A food-based formulation provides lycopene with the same bioavailability to humans as that from tomato paste

Author(s): Richelle M,Bortlik K, Liardet S, Hager C, Lambelet P, et al.

A physiological pharmacokinetic model describing the disposition of lycopene in healthy men

Author(s): Diwadkar-Navsariwala V, Novotny JA, Gustin DM, Sosman JA, Rodvold KA, et al.

Combinations of tomato and broccoli enhance antitumor activity in dunning r3327-h prostate adenocarcinomas

Author(s): Canene-Adams K,Lindshield BL, Wang S, Jeffery EH, Clinton SK, et al.

Combined lycopene and vitamin E treatment suppresses the growth of PC-346C human prostate cancer cells in nude mice

Author(s): Limpens J,Schröder FH, de Ridder CM, Bolder CA, Wildhagen MF, et al.

Chemoprevention of prostate cancer with lycopene in the TRAMP model

Author(s): Konijeti R, Henning S, Moro A, Sheikh A, Elashoff D, et al.

Antioxidants block prostate cancer in lady transgenic mice

Author(s): Venkateswaran V,Fleshner NE, Sugar LM, Klotz LH

Nutritional supplements, COX-2 and IGF-1 expression in men on active surveillance for prostate cancer

Author(s): Chan JM, Weinberg V, Magbanua MJ, Sosa E, Simko J, et al.

Lycopene effects on rat normal prostate and prostate tumor tissue

Author(s): Siler U, Herzog A, Spitzer V, Seifert N, Denelavas A, et al.

Effects of lycopene on protein expression in human primary prostatic epithelial cells

Author(s): Qiu X, Yuan Y, Vaishnav A, Tessel MA, Nonn L, et al.

Effect of lycopene on cell viability and cell cycle progression in human cancer cell lines

Author(s): Teodoro AJ, Oliveira FL, Martins NB, Maia Gde A, Martucci RB, et al.

A prospective study of lycopene and tomato product intake and risk of prostate cancer

Author(s): Kirsh VA,Mayne ST, Peters U, Chatterjee N, Leitzmann MF, et al.

Lycopene for the prevention of prostate cancer

Author(s): Ilic D, Forbes KM, Hassed C

A randomized trial of lycopene supplementation in Tobago men with high prostate cancer risk

Author(s): Bunker CH, McDonald AC, Evans RW, de la Rosa N, Boumosleh JM, et al.

Tomato sauce supplementation and prostate cancer: lycopene accumulation and modulation of biomarkers of carcinogenesis

Author(s): Bowen P, Chen L, Stacewicz-Sapuntzakis M, Duncan C, Sharifi R, et al.

Serenoarepens, lycopene and selenium versus tamsulosin for the treatment of LUTS/BPH

Author(s): Morgia G, Russo GI, Voce S, Palmieri F, Gentile M, et al.