Serum lycopene, other carotenoids, and prostate cancer risk: a nested case-control study in the prostate, lung, colorectal, and ovarian cancer screening trial

Author(s): Peters U

Abstract

Background:Reports from several studies have suggested that carotenoids, and in particular lycopene, could be prostate cancer-preventive agents. This has stimulated extensive laboratory and clinical research, as well as much commercial and public enthusiasm. However, the epidemiologic evidence remains inconclusive.

Materials and methods:We investigated the association between prediagnostic serum carotenoids (lycopene, alpha-carotene, beta-carotene, beta-cryptoxanthin, lutein, and zeaxanthin) and risk of prostate cancer in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial, a multicenter study designed to examine methods of early detection and risk factors for cancer. The study included 692 incident prostate cancer cases, diagnosed 1 to 8 years after study entry, including 270 aggressive cases, with regional or distant stage (n = 90) or Gleason score >or=7 (n = 235), and 844 randomly selected, matched controls. As study participants were selected from those who were assigned to annual standardized screening for prostate cancer, results are unlikely to be biased by differential screening, a circumstance that is difficult to attain under non-trial conditions.

Results:No association was observed between serum lycopene and total prostate cancer [odds ratios (OR), 1.14; 95% confidence intervals (95% CI), 0.82-1.58 for highest versus lowest quintile; P for trend, 0.28] or aggressive prostate cancer (OR, 0.99; 95% CI, 0.62-1.57 for highest versus lowest quintile; P for trend, 0.433). beta-Carotene was associated with an increased risk of aggressive prostate cancer (OR, 1.67; 95% CI, 1.03-2.72 for highest versus lowest quintile; P for trend, 0.13); in particular, regional or distant stage disease (OR, 3.16; 95% CI, 1.37-7.31 for highest versus lowest quintile; P for trend, 0.02); other carotenoids were not associated with risk.

Conclusion:In this large prospective study, high serum beta-carotene concentrations were associated with increased risk for aggressive, clinically relevant prostate cancer. Lycopene and other carotenoids were unrelated to prostate cancer. Consistent with other recent publications, these results suggest that lycopene or tomato-based regimens will not be effective for prostate cancer prevention.

Similar Articles

Role of lycopene and tomato products in prostate health

Author(s): Stacewicz-Sapuntzakis M, Bowen PE

Plant extracts: sense or nonsense?CurrOpinUrol 18: 16-20

Author(s): Madersbacher S, Berger I, Ponholzer A, Marszalek M

Lycopene inhibits the growth of normal human prostate epithelial cells in vitro

Author(s): Obermüller-Jevic UC,Olano-Martin E, Corbacho AM, Eiserich JP, van der Vliet A, et al.

Lycopene reduced gene expression of steroid targets and inflammatory markers in normal rat prostate

Author(s): Herzog A, Siler U, Spitzer V, Seifert N, Denelavas A, et al.

Lycopene inhibits disease progression in patients with benign prostate hyperplasia

Author(s): Schwarz S,Obermüller-Jevic UC, Hellmis E, Koch W, Jacobi G, et al.

Diet adherence dynamics and physiological responses to a tomato product whole-food intervention in African-American men

Author(s): Park E,Stacewicz-Sapuntzakis M, Sharifi R, Wu Z, Freeman VL, et al.

Lycopene and prostate cancer

Author(s): Barber NJ, Barber J

Tomatoes, lycopene, and prostate cancer: progress and promise

Author(s): Hadley CW, Miller EC, Schwartz SJ, Clinton SK

A food-based formulation provides lycopene with the same bioavailability to humans as that from tomato paste

Author(s): Richelle M,Bortlik K, Liardet S, Hager C, Lambelet P, et al.

A physiological pharmacokinetic model describing the disposition of lycopene in healthy men

Author(s): Diwadkar-Navsariwala V, Novotny JA, Gustin DM, Sosman JA, Rodvold KA, et al.

Combinations of tomato and broccoli enhance antitumor activity in dunning r3327-h prostate adenocarcinomas

Author(s): Canene-Adams K,Lindshield BL, Wang S, Jeffery EH, Clinton SK, et al.

Combined lycopene and vitamin E treatment suppresses the growth of PC-346C human prostate cancer cells in nude mice

Author(s): Limpens J,Schröder FH, de Ridder CM, Bolder CA, Wildhagen MF, et al.

Chemoprevention of prostate cancer with lycopene in the TRAMP model

Author(s): Konijeti R, Henning S, Moro A, Sheikh A, Elashoff D, et al.

Antioxidants block prostate cancer in lady transgenic mice

Author(s): Venkateswaran V,Fleshner NE, Sugar LM, Klotz LH

Nutritional supplements, COX-2 and IGF-1 expression in men on active surveillance for prostate cancer

Author(s): Chan JM, Weinberg V, Magbanua MJ, Sosa E, Simko J, et al.

Lycopene effects on rat normal prostate and prostate tumor tissue

Author(s): Siler U, Herzog A, Spitzer V, Seifert N, Denelavas A, et al.

Effects of lycopene on protein expression in human primary prostatic epithelial cells

Author(s): Qiu X, Yuan Y, Vaishnav A, Tessel MA, Nonn L, et al.

Effect of lycopene on cell viability and cell cycle progression in human cancer cell lines

Author(s): Teodoro AJ, Oliveira FL, Martins NB, Maia Gde A, Martucci RB, et al.

A prospective study of lycopene and tomato product intake and risk of prostate cancer

Author(s): Kirsh VA,Mayne ST, Peters U, Chatterjee N, Leitzmann MF, et al.

Lycopene for the prevention of prostate cancer

Author(s): Ilic D, Forbes KM, Hassed C

A randomized trial of lycopene supplementation in Tobago men with high prostate cancer risk

Author(s): Bunker CH, McDonald AC, Evans RW, de la Rosa N, Boumosleh JM, et al.

Tomato sauce supplementation and prostate cancer: lycopene accumulation and modulation of biomarkers of carcinogenesis

Author(s): Bowen P, Chen L, Stacewicz-Sapuntzakis M, Duncan C, Sharifi R, et al.

Serenoarepens, lycopene and selenium versus tamsulosin for the treatment of LUTS/BPH

Author(s): Morgia G, Russo GI, Voce S, Palmieri F, Gentile M, et al.