Cyclodextrin-based nanosponges as drug carriers

Author(s): Trotta F, Zanetti M, Cavalli R

Abstract

Cyclodextrin-based nanosponges, which are proposed as a new nanosized delivery system, are innovative cross-linked cyclodextrin polymers nanostructured within a three-dimensional network. This type of cyclodextrin polymer can form porous insoluble nanoparticles with a crystalline or amorphous structure and spherical shape or swelling properties. The polarity and dimension of the polymer mesh can be easily tuned by varying the type of cross-linker and degree of cross-linking. Nanosponge functionalisation for site-specific targeting can be achieved by conjugating various ligands on their surface. They are a safe and biodegradable material with negligible toxicity on cell cultures and are well-tolerated after injection in mice. Cyclodextrin-based nanosponges can form complexes with different types of lipophilic or hydrophilic molecules. The release of the entrapped molecules can be varied by modifying the structure to achieve prolonged release kinetics or a faster release. The nanosponges could be used to improve the aqueous solubility of poorly water-soluble molecules, protect degradable substances, obtain sustained delivery systems or design innovative drug carriers for nanomedicine.

Similar Articles

Connection between the vibrational dynamics and the cross-linking properties in cyclodextrins-based polymers

Author(s): Crupi V, Fontana A, Giarola M, Majolino D, Mariotto G, et al.

Nanosponge formulations as oxygen delivery systems

Author(s): Cavalli R, Akhter AK, Bisazza A, Giustetto P, Trotta F, et al.

Cyclodextrin-based nanosponges: a propitious platform for enhancing drug delivery

Author(s): Chilajwar SV, Pednekar PP, Jadhav KR, Gupta GJ, Kadam VJ

Cyclodextrin-based nanogels for pharmaceutical and biomedical applications

Author(s): Moya-Ortega MD, Alvarez-Lorenzo C, Concheiro A, Loftsson T

Tamoxifen citrate loaded amphiphilic beta-cyclodextrin nanoparticles: in vitro characterization and cytotoxicity

Author(s): Memisoglu-Bilensoy E, Vural I, Bochot A, Renoir J M, Duchene D, Hincal A A

The application of nanosponges to cancer drug delivery

Author(s): Trotta F, Dianzani C, Caldera F, Mognetti B, Cavalli R

Phase-controlled supramolecularphoto chirogenesis in cyclodextrinnanosponges

Author(s): Liang W, Yang C, Zhou D, Haneoka H, Nishijima M, et al.

Regenerative medicine and stem cell based drug discovery

Author(s): Sakurada K, McDonald FM, Shimada F

Hydrogels in regenerative medicine

Author(s): Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA

Hydrogel-based drug delivery systems: comparison of drug diffusivity and release kinetics

Author(s): Brandl F, Kastner F, Gschwind RM, Blunk T, Tessmar J, et al.

Controlled drug delivery in tissue engineering

Author(s): Biondi M, Ungaro F, Quaglia F, Netti PA

Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks

Author(s): Elisseeff J, McIntosh W, Anseth K, Riley S, Ragan P, et al.

Hydrogen-bond dynamics of water confined in cyclodextrinnanosponges hydrogel

Author(s): Crupi V, Fontana A, Majolino D, Mele A, Melone L, et al.

Collective nature of the boson peak and universal transboson dynamics of glasses

Author(s): Chumakov AI, Sergueev I, van B├╝rck U, Schirmacher W, Asthalter T, et al.

Designing materials for biology and medicine

Author(s): Langer R, Tirrell DA

Photodegradable hydrogels for dynamic tuning of physical and chemical properties

Author(s): Kloxin AM, Kasko AM, Salinas CN, Anseth KS

Anomalous diffusion of Ibuprofen in cyclodextrinnanosponge hydrogels: an HRMAS NMR study

Author(s): Ferro M, Castiglione F, Punta C, Melone L, Panzeri W2, et al.