Direct evidence of gel-sol transition in cyclodextrin-based hydrogels as revealed by FTIR-ATR spectroscopy

Author(s): Crupi V, Majolino D, Mele A, Melone L, Punta C, et al.


The phase transition from gel to liquid suspension in cyclodextrin (CD)-based hydrogels is in depth monitored by using Fourier transform infrared spectroscopy in attenuated total reflectance geometry. Cyclodextrin nanosponges (CDNS) synthesized by polymerization of CD with the cross-linking agent ethylenediaminetetraacetic dianhydride at different cross-linking agent/CD molar ratios have been left to evolve from gel phase into liquid suspension upon gradual increase of the hydration level. Measurements of the changes occurring in the vibrational dynamics of the system during this transition provide direct evidence of the gel-sol progress of the CNDS hydrogel, by accounting for the connectivity pattern of water molecules concurring to the gelation process. The experimental results clearly indicate that the increase of the hydration level is accompanied by the corresponding increase of the population of H2O molecules engaged in high-connectivity hydrogen-bond networks. The water tetrahedral arrangement is thus dominant above a characteristic cross-over hydration level, experimentally determined for all the investigated samples. The observation of this characteristic cross-over point for the CDNS hydrogel and its correlation with other parameters of the system (e.g. the absorption ability of CDNS and elasticity of the polymer matrix) is, once again, modulated by the cross-linking agent/CD molar ratio. The latter seems indeed to play a key role in defining the nano- and microscopic properties of nanosponge hydrogels.

Similar Articles

Connection between the vibrational dynamics and the cross-linking properties in cyclodextrins-based polymers

Author(s): Crupi V, Fontana A, Giarola M, Majolino D, Mariotto G, et al.

Cyclodextrin-based nanosponges as drug carriers

Author(s): Trotta F, Zanetti M, Cavalli R

Nanosponge formulations as oxygen delivery systems

Author(s): Cavalli R, Akhter AK, Bisazza A, Giustetto P, Trotta F, et al.

Cyclodextrin-based nanosponges: a propitious platform for enhancing drug delivery

Author(s): Chilajwar SV, Pednekar PP, Jadhav KR, Gupta GJ, Kadam VJ

Cyclodextrin-based nanogels for pharmaceutical and biomedical applications

Author(s): Moya-Ortega MD, Alvarez-Lorenzo C, Concheiro A, Loftsson T

Tamoxifen citrate loaded amphiphilic beta-cyclodextrin nanoparticles: in vitro characterization and cytotoxicity

Author(s): Memisoglu-Bilensoy E, Vural I, Bochot A, Renoir J M, Duchene D, Hincal A A

The application of nanosponges to cancer drug delivery

Author(s): Trotta F, Dianzani C, Caldera F, Mognetti B, Cavalli R

Phase-controlled supramolecularphoto chirogenesis in cyclodextrinnanosponges

Author(s): Liang W, Yang C, Zhou D, Haneoka H, Nishijima M, et al.

Regenerative medicine and stem cell based drug discovery

Author(s): Sakurada K, McDonald FM, Shimada F

Hydrogels in regenerative medicine

Author(s): Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA

Hydrogel-based drug delivery systems: comparison of drug diffusivity and release kinetics

Author(s): Brandl F, Kastner F, Gschwind RM, Blunk T, Tessmar J, et al.

Controlled drug delivery in tissue engineering

Author(s): Biondi M, Ungaro F, Quaglia F, Netti PA

Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks

Author(s): Elisseeff J, McIntosh W, Anseth K, Riley S, Ragan P, et al.

Hydrogen-bond dynamics of water confined in cyclodextrinnanosponges hydrogel

Author(s): Crupi V, Fontana A, Majolino D, Mele A, Melone L, et al.

Collective nature of the boson peak and universal transboson dynamics of glasses

Author(s): Chumakov AI, Sergueev I, van B├╝rck U, Schirmacher W, Asthalter T, et al.

Designing materials for biology and medicine

Author(s): Langer R, Tirrell DA

Photodegradable hydrogels for dynamic tuning of physical and chemical properties

Author(s): Kloxin AM, Kasko AM, Salinas CN, Anseth KS

Anomalous diffusion of Ibuprofen in cyclodextrinnanosponge hydrogels: an HRMAS NMR study

Author(s): Ferro M, Castiglione F, Punta C, Melone L, Panzeri W2, et al.