Self-diffusion and mutual diffusion of small molecules in high-set curdlan hydrogels studied by 31P NMR

Author(s): Gagnon MA, Lafleur M

Abstract

Self-diffusion and mutual diffusion are two different transport mechanisms experimentally characterized on different length and time scales. NMR spectroscopy is a highly suitable technique to characterize these two phenomena as both mechanisms can be studied on the same system and in the same experimental conditions. Pulsed field gradient (PFG) NMR was used to measure the self-diffusion whereas (31)P NMR profiling provided an approach to determine the mutual diffusion coefficients. We have characterized the diffusion of phosphate, trimetaphosphate, alendronate, and d-glucose-6-phosphate in hydrogels prepared with 10% (w/v) curdlan, a bacterial polysaccharide built of linear (1-->3)-beta-d-glucose repeating units. These solutes are small compared to the average pore size of the hydrogel, as inferred from environmental scanning electron microscopy (eSEM). Our results show that the self- and mutual-diffusion coefficients of small molecules in curdlan hydrogels are similar and are reduced by 30% compared to those measured in aqueous solutions. These observations are validated for the complete series of investigated analytes. It is therefore concluded that, for this system, the analyte diffusion in the gel is essentially reduced because of interactions at the molecular level and that the open structure of this gel has a very limited influence at the mesoscopic length scale. A literature survey indicates that these conditions prevail for the large majority of the systems that have been investigated up to now.

Similar Articles

Connection between the vibrational dynamics and the cross-linking properties in cyclodextrins-based polymers

Author(s): Crupi V, Fontana A, Giarola M, Majolino D, Mariotto G, et al.

Cyclodextrin-based nanosponges as drug carriers

Author(s): Trotta F, Zanetti M, Cavalli R

Nanosponge formulations as oxygen delivery systems

Author(s): Cavalli R, Akhter AK, Bisazza A, Giustetto P, Trotta F, et al.

Cyclodextrin-based nanosponges: a propitious platform for enhancing drug delivery

Author(s): Chilajwar SV, Pednekar PP, Jadhav KR, Gupta GJ, Kadam VJ

Cyclodextrin-based nanogels for pharmaceutical and biomedical applications

Author(s): Moya-Ortega MD, Alvarez-Lorenzo C, Concheiro A, Loftsson T

Tamoxifen citrate loaded amphiphilic beta-cyclodextrin nanoparticles: in vitro characterization and cytotoxicity

Author(s): Memisoglu-Bilensoy E, Vural I, Bochot A, Renoir J M, Duchene D, Hincal A A

The application of nanosponges to cancer drug delivery

Author(s): Trotta F, Dianzani C, Caldera F, Mognetti B, Cavalli R

Phase-controlled supramolecularphoto chirogenesis in cyclodextrinnanosponges

Author(s): Liang W, Yang C, Zhou D, Haneoka H, Nishijima M, et al.

Regenerative medicine and stem cell based drug discovery

Author(s): Sakurada K, McDonald FM, Shimada F

Hydrogels in regenerative medicine

Author(s): Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA

Hydrogel-based drug delivery systems: comparison of drug diffusivity and release kinetics

Author(s): Brandl F, Kastner F, Gschwind RM, Blunk T, Tessmar J, et al.

Controlled drug delivery in tissue engineering

Author(s): Biondi M, Ungaro F, Quaglia F, Netti PA

Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks

Author(s): Elisseeff J, McIntosh W, Anseth K, Riley S, Ragan P, et al.

Hydrogen-bond dynamics of water confined in cyclodextrinnanosponges hydrogel

Author(s): Crupi V, Fontana A, Majolino D, Mele A, Melone L, et al.

Collective nature of the boson peak and universal transboson dynamics of glasses

Author(s): Chumakov AI, Sergueev I, van B├╝rck U, Schirmacher W, Asthalter T, et al.

Designing materials for biology and medicine

Author(s): Langer R, Tirrell DA

Photodegradable hydrogels for dynamic tuning of physical and chemical properties

Author(s): Kloxin AM, Kasko AM, Salinas CN, Anseth KS

Anomalous diffusion of Ibuprofen in cyclodextrinnanosponge hydrogels: an HRMAS NMR study

Author(s): Ferro M, Castiglione F, Punta C, Melone L, Panzeri W2, et al.