Author(s): Couillard-Despres S, Quehl E, Altendorfer K, Bentley K, Brady AM, et al.
During developmental and adult neurogenesis, doublecortin is an early neuronal marker expressed when neural stem cells assume a neuronal cell fate. To understand mechanisms involved in early processes of neuronal fate decision, we investigated cell lines for their capacity to induce expression of doublecortin upon neuronal differentiation and develop in vitro reporter models using doublecortin promoter sequences.
ResultsAmong various cell lines investigated, the human teratocarcinoma cell line NTERA-2 was found to fulfill our criteria. Following induction of differentiation using retinoic acid treatment, we observed a 16-fold increase in doublecortin mRNA expression, as well as strong induction of doublecortin polypeptide expression. The acquisition of a neuronal precursor phenotype was also substantiated by the establishment of a multipolar neuronal morphology and expression of additional neuronal markers, such as Map2, βIII-tubulin and neuron-specific enolase. Moreover, stable transfection in NTERA-2 cells of reporter constructs encoding fluorescent or luminescent genes under the control of the doublecortin promoter allowed us to directly detect induction of neuronal differentiation in cell culture, such as following retinoic acid treatment or mouse Ngn2 transient overexpression.
ConclusionInduction of doublecortin expression in differentiating NTERA-2 cells suggests that these cells accurately recapitulate some of the very early events of neuronal determination. Hence, the use of reporter genes under the control of the doublecortin promoter in NTERA-2 cells will help us to investigate factors involved early in the course of neuronal differentiation processes. Moreover the ease to detect the induction of a neuronal program in this model will permit to perform high throughput screening for compounds acting on the early neuronal differentiation mechanisms.
Author(s): Colborn T
Author(s): Herbert MR
Author(s): Rauh VA, Garfinkel R, Perera FP, Andrews HF, Hoepner L, et al.
Author(s): Grandjean P, Landrigan PJ
Author(s): Grandjean P, Landrigan PJ
Author(s): Makris SL, Raffaele K, Allen S, Bowers WJ, Hasset U
Author(s): Middaugh LD, Dow-Edwards D, Li AA
Author(s): Cooper RL, Lamb JC, Barlow SM
Author(s): Doe JE, Boobis AR, Blacker A, Dellarco V, Doerrer NG, et al.
Author(s): Hill EJ, Woehrling EK, Prince M, Coleman MD
Author(s): Hou Z, Zhang J, Schwartz MP, Stewart R, Page CD, et al.
Author(s): Laurenza I, Pallocca G, Mennecozzi M, Scelfo B, Pamies D, et al.
Author(s): Menzner AK, AbolpourMofrad S, Friedrich O, Gilbert DF
Author(s): Pallocca G, Fabbri M, Sacco MG, Gribaldo L, Pamies D, et al.
Author(s): Haile Y, Fu W, Shi B, Westaway D, Baker G, et al.
Author(s): Andrews PW
Author(s): Coyne L, Shan M, Przyborski SA, Hirakawa R, Halliwell RF
Author(s): Kuenzel K, Friedrich O, Gilbert DF
Author(s): Pleasure SJ, Lee VM
Author(s): Pleasure SJ, Page C, Lee VM
Author(s): Stewart R, Coyne L, Lako M, Halliwell RF, Przyborski SA
Author(s): Hsu TC, Liu KK, Chang HC, Hwang E, Chao JI
Author(s): Megiorni F, Mora B, Indovina P, Mazzilli MC
Author(s): Paquet-Durand F, Tan S, Bicker G
Author(s): Podrygajlo G, Tegenge MA, Gierse A
Author(s): Yao ZX, Han Z, Xu J, Greeson J, Lecanu L, et al.
Author(s): AbolpourMofrad S, Kuenzel K, Friedrich O, Gilbert DF