Turning teratocarcinoma cells into neurons: rapid differentiation of NT-2 cells in floating spheres

Author(s): Paquet-Durand F, Tan S, Bicker G


Cells from the human teratocarcinoma line NTera-2 can be induced to terminally differentiate into postmitotic neurons when treated with retinoic acid. However, this differentiation process is rather time consuming as it takes between 42 and 54 days. Here, we propose a modified differentiation protocol which reduces the time needed for differentiation considerably without compromising the quantity of the neurons obtained. The introduction of a proliferation step as free floating cell spheres cuts the total time needed to obtain high yields of purified NT-2 neurons to about 24–28 days. The cells obtained show neuronal morphology and migrate to form ganglion-like cell conglomerates. Differentiated cells express neuronal polarity markers such as the cytoskeleton associated proteins MAP2 and Tau. Moreover, the generation of neurons in sphere cultures induced immunoreactivity to the ELAV-like neuronal RNA-binding proteins HuC/D, which have been implicated in mechanisms of nerve cell differentiation.

Similar Articles

Developmental neurotoxicity of industrial chemicals

Author(s): Grandjean P, Landrigan PJ

Neurobehavioural effects of developmental toxicity

Author(s): Grandjean P, Landrigan PJ

A tiered approach to systemic toxicity testing for agricultural chemical safety assessment

Author(s): Doe JE, Boobis AR, Blacker A, Dellarco V, Doerrer NG, et al.

Human in vitro reporter model of neuronal development and early differentiation processes

Author(s): Couillard-Despres S, Quehl E, Altendorfer K, Bentley K, Brady AM, et al.

A human pluripotent stem cell platform for assessing developmental neural toxicity screening

Author(s): Hou Z, Zhang J, Schwartz MP, Stewart R, Page CD, et al.

Towards in vitro DT/DNT testing: Assaying chemical susceptibility in early differentiating NT2 cells

Author(s): Menzner AK, AbolpourMofrad S, Friedrich O, Gilbert DF

Neuropharmacological properties of neurons derived from human stem cells

Author(s): Coyne L, Shan M, Przyborski SA, Hirakawa R, Halliwell RF

Optimizing neuronal differentiation of human pluripotent NT2 stem cells in monolayer cultures

Author(s): AbolpourMofrad S, Kuenzel K, Friedrich O, Gilbert DF