Recommended Conferences

Genetic Engineering and Gene Therapy

Paris, France

Human Genetics and Genetic Disorders

Miami, USA

Tissue Engineering and Regenerative Medicine

Chicago, USA
Related Subjects
 

Abnormal expression of the pre-mRNA splicing regulators SRSF, SRSF, SRPK1 and SRPK2 in non small cell lung carcinoma

Author(s): Gout S,Brambilla E, Boudria A, Drissi R, Lantuejoul S, et al.

Abstract

Splicing abnormalities frequently occur in cancer. A key role as splice site choice regulator is played by the members of the SR (Ser/Arg-rich) family of proteins. We recently demonstrated that SRSF2 is involved in cisplatin-mediated apoptosis of human lung carcinoma cell lines. In this study, by using immunohistochemistry, we demonstrate that the SR proteins SRSF1 and SRSF2 are overexpressed in 63% and 65% of lung adenocarcinoma (ADC) as well as in 68% and 91% of squamous cell lung carcinoma (SCC), respectively, compared to normal lung epithelial cells. In addition, we show that SRSF2 overexpression correlates with high level of phosphorylated SRSF2 in both ADC (p<0.0001) and SCC (p = 0.02), indicating that SRSF2 mostly accumulates under a phosphorylated form in lung tumors. Consistently, we further show that the SR-phosphorylating kinases SRPK1 and SRPK2 are upregulated in 92% and 94% of ADC as well as in 72% and 68% of SCC, respectively. P-SRSF2 and SRPK2 scores are correlated in ADC (p = 0.01). Using lung adenocarcinoma cell lines, we demonstrate that SRSF1 overexpression leads to a more invasive phenotype, evidenced by activation of PI3K/AKT and p42/44MAPK signaling pathways, increased growth capacity in soft agar, acquisition of mesenchymal markers such as E cadherin loss, vimentin and fibronectin gain, and increased resistance to chemotherapies. Finally, we provide evidence that high levels of SRSF1 and P-SRSF2 proteins are associated with extensive stage (III-IV) in ADC. Taken together, these results indicate that a global deregulation of pre-mRNA splicing regulators occurs during lung tumorigenesis and does not predict same outcome in both Non Small Cell Lung Carcinoma histological sub-types, likely contributing to a more aggressive phenotype in adenocarcinoma.

Similar Articles

Bladder cancer biomarkers: review and update

Author(s): Ghafouri-Fard S,Nekoohesh L, Motevaseli E

Recent advances in the diagnosis and treatment of bladder cancer

Author(s): Cheung G,Sahai A, Billia M, Dasgupta P, Khan MS

Primary bladder preservation treatment for urothelial bladder cancer

Author(s): Biagioli MC, Fernandez DC, Spiess PE, Wilder RB

Prediction of muscle-invasive bladder cancer using urinary proteomics

Author(s): Schiffer E,Vlahou A, Petrolekas A, Stravodimos K, Tauber R, et al.

Making sense of cancer genomic data

Author(s): Chin L, Hahn WC, Getz G, Meyerson M

Principles and methods of integrative genomic analyses in cancer

Author(s): Kristensen VN,Lingjærde OC,Russnes HG,Vollan HK,Frigessi A, et al.

affy--analysis of Affymetrix GeneChip data at the probe level

Author(s): Gautier L, Cope L, Bolstad BM, Irizarry RA

Biomarkers for bladder cancer aggressiveness

Author(s): Frantzi M,Makridakis M, Vlahou A

Gene profiling, biomarkers and pathways characterizing HCV-related hepatocellular carcinoma

Author(s): De Giorgi V, Monaco A, Worchech A, Tornesello M, Izzo F, et al.

The double bromodomain protein Brd2 promotes B cell expansion and mitogenesis

Author(s): Belkina AC, Blanton WP, Nikolajczyk BS, Denis GV

Inhibition of BET bromodomain proteins as a therapeutic approach in prostate cancer

Author(s): Wyce A,Degenhardt Y, Bai Y, Le B, Korenchuk S, et al.

A UPF3-mediated regulatory switch that maintains RNA surveillance

Author(s): Chan WK,Bhalla AD, Le Hir H, Nguyen LS, Huang L, et al.

Targeted therapies in urothelial carcinoma

Author(s): Ghosh M,Brancato SJ, Agarwal PK, Apolo AB

Gene expression profiling and pathway analysis of superficial bladder cancer in rats

Author(s): Arum CJ,Anderssen E, Tømmerås K, Lundgren S, Chen D, et al.

Activation of RAS family genes in urothelial carcinoma

Author(s): Boulalas I,Zaravinos A, Karyotis I, Delakas D, Spandidos DA

Ras mutation cooperates with ß-catenin activation to drive bladder tumourigenesis

Author(s): Ahmad I, Patel R, Liu Y, Singh LB, Taketo MM, et al.

Ras in cancer and developmental diseases

Author(s): Fernández-Medarde A, Santos E