Recommended Conferences

Genetic Engineering and Gene Therapy

Paris, France

Human Genetics and Genetic Disorders

Miami, USA

Tissue Engineering and Regenerative Medicine

Chicago, USA
Related Subjects

Assessing the impact of transcriptomics, proteomics and metabolomics on fungal phytopathology

Author(s): Tan K, Ipcho S, Trengove R, Oliver R, Solomon P


SUMMARY Peer-reviewed literature is today littered with exciting new tools and techniques that are being used in all areas of biology and medicine. Transcriptomics, proteomics and, more recently, metabolomics are three of these techniques that have impacted on fungal plant pathology. Used individually, each of these techniques can generate a plethora of data that could occupy a laboratory for years. When used in combination, they have the potential to comprehensively dissect a system at the transcriptional and translational level. Transcriptomics, or quantitative gene expression profiling, is arguably the most familiar to researchers in the field of fungal plant pathology. Microarrays have been the primary technique for the last decade, but others are now emerging. Proteomics has also been exploited by the fungal phytopathogen community, but perhaps not to its potential. A lack of genome sequence information has frustrated proteomics researchers and has largely contributed to this technique not fulfilling its potential. The coming of the genome sequencing era has partially alleviated this problem. Metabolomics is the most recent of these techniques to emerge and is concerned with the non-targeted profiling of all metabolites in a given system. Metabolomics studies on fungal plant pathogens are only just beginning to appear, although its potential to dissect many facets of the pathogen and disease will see its popularity increase quickly. This review assesses the impact of transcriptomics, proteomics and metabolomics on fungal plant pathology over the last decade and discusses their futures. Each of the techniques is described briefly with further reading recommended. Key examples highlighting the application of these technologies to fungal plant pathogens are also reviewed.

Similar Articles

Effect of climatic factors on powdery mildew caused by Sphaerotheca macularis f

Author(s): Amsalem L, Freeman S, Rav-David D, Nitzani Y, Sztejnberg A, et al.

Biotechnological concepts for improving plant innate immunity

Author(s): Gust AA, Brunner F, Nurnberger T

The genome of woodland strawberry (Fragaria vesca)

Author(s): Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, et al.

An inbred line of the diploid strawberry Fragaria vesca f

Author(s): Slovin JP, Schmitt K, Folta KM

Cytochromes P450 for engineering herbicide tolerance

Author(s): Werck-Reichhart D, Hehn A, Didierjean L

The barley/Blumeria (syn

Author(s): Thordal-Christensen H, Gregersen PL, Collinge DB

The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis

Author(s): Jensen MK, Rung JH, Gregersen PL, Gjetting T, Fuglsang AT, et al.