Recommended Conferences

Genetic Engineering and Gene Therapy

Paris, France

Human Genetics and Genetic Disorders

Miami, USA

Tissue Engineering and Regenerative Medicine

Chicago, USA
Related Subjects

Deletions of PURA, at 5q, and PURB, at 7p1, in myelodysplastic syndrome and progression to acute myelogenous leukemia

Author(s): Lezon-Geyda K,Najfeld V, Johnson EM


Deletions or monosomy of chromosomes 5 and 7 are frequently observed in myelodysplastic syndromes (MDS) and acute myelogenous leukemia (AML). In this study two genes, PURA and PURB, encoding functionally cooperative proteins in the Pur family, are localized to chromosome bands 5q31.1 and 7p13, respectively. One or both of these loci are shown to be hemizygously deleted in 60 MDS or AML patients using fluorescence in situ hybridization (FISH). High-resolution mapping of PURA localizes it approximately 1.1 Mb telomeric to the EGR-1 gene. Frequency of PURA deletion and segregation with EGR-1 indicate that PURA is within the most commonly deleted segment in myeloid disorders characterized by del(5)(q31). No mutations have been detected within the coding sequence of PURA. Concurrent deletions of PURA and PURB occur in MDS at a rate nearly 1.5-fold higher than statistically expected and in AML at a rate > 5-fold higher. This novel simultaneous deletion of two closely related gene family members may thus have consequences related to progression to AML. Pur alpha, an Rb-binding protein, has been implicated in cell cycle control and differentiation, and Pur alpha and Pur beta are reported to function as heterodimers. Alterations in these genes could affect a delicate balance critical in myeloid development.

Similar Articles

Bladder cancer biomarkers: review and update

Author(s): Ghafouri-Fard S,Nekoohesh L, Motevaseli E

Recent advances in the diagnosis and treatment of bladder cancer

Author(s): Cheung G,Sahai A, Billia M, Dasgupta P, Khan MS

Primary bladder preservation treatment for urothelial bladder cancer

Author(s): Biagioli MC, Fernandez DC, Spiess PE, Wilder RB

Prediction of muscle-invasive bladder cancer using urinary proteomics

Author(s): Schiffer E,Vlahou A, Petrolekas A, Stravodimos K, Tauber R, et al.

Making sense of cancer genomic data

Author(s): Chin L, Hahn WC, Getz G, Meyerson M

Principles and methods of integrative genomic analyses in cancer

Author(s): Kristensen VN,Lingjærde OC,Russnes HG,Vollan HK,Frigessi A, et al.

affy--analysis of Affymetrix GeneChip data at the probe level

Author(s): Gautier L, Cope L, Bolstad BM, Irizarry RA

Biomarkers for bladder cancer aggressiveness

Author(s): Frantzi M,Makridakis M, Vlahou A

Gene profiling, biomarkers and pathways characterizing HCV-related hepatocellular carcinoma

Author(s): De Giorgi V, Monaco A, Worchech A, Tornesello M, Izzo F, et al.

The double bromodomain protein Brd2 promotes B cell expansion and mitogenesis

Author(s): Belkina AC, Blanton WP, Nikolajczyk BS, Denis GV

Inhibition of BET bromodomain proteins as a therapeutic approach in prostate cancer

Author(s): Wyce A,Degenhardt Y, Bai Y, Le B, Korenchuk S, et al.

A UPF3-mediated regulatory switch that maintains RNA surveillance

Author(s): Chan WK,Bhalla AD, Le Hir H, Nguyen LS, Huang L, et al.

Targeted therapies in urothelial carcinoma

Author(s): Ghosh M,Brancato SJ, Agarwal PK, Apolo AB

Gene expression profiling and pathway analysis of superficial bladder cancer in rats

Author(s): Arum CJ,Anderssen E, Tømmerås K, Lundgren S, Chen D, et al.

Activation of RAS family genes in urothelial carcinoma

Author(s): Boulalas I,Zaravinos A, Karyotis I, Delakas D, Spandidos DA

Ras mutation cooperates with ß-catenin activation to drive bladder tumourigenesis

Author(s): Ahmad I, Patel R, Liu Y, Singh LB, Taketo MM, et al.

Ras in cancer and developmental diseases

Author(s): Fernández-Medarde A, Santos E