Recommended Conferences

Genetic Engineering and Gene Therapy

Paris, France

Human Genetics and Genetic Disorders

Miami, USA

Tissue Engineering and Regenerative Medicine

Chicago, USA
Related Subjects
 

Differential in vivo binding dynamics of somatic and oocyte-specific linker histones in oocytes and during ES cell during nuclear transfer

Author(s): Becker M, Becker A, Miyara F, Han Z, KiharaM,et al.

Abstract

The embryonic genome is formed by fusion of a maternal and a paternal genome. To accommodate the resulting diploid genome in the fertilized oocyte dramatic global genome reorganizations must occur. The higher order structure of chromatin in vivo is critically dependent on architectural chromatin proteins, with the family of linker histone proteins among the most critical structural determinants. Although somatic cells contain numerous linker histone variants, only one, H1FOO, is present in mouse oocytes. Upon fertilization H1FOO rapidly populates the introduced paternal genome and replaces sperm-specific histone-like proteins. The same dynamic replacement occurs upon introduction of a nucleus during somatic cell nuclear transfer. To understand the molecular basis of this dynamic histone replacement process, we compared the localization and binding dynamics of somatic H1 and oocyte-specific H1FOO and identified the molecular determinants of binding to either oocyte or somatic chromatin in living cells. We find that although both histones associate readily with chromatin in nuclei of somatic cells, only H1FOO is capable of correct chromatin association in the germinal vesicle stage oocyte nuclei. This specificity is generated by the N-terminal and globular domains of H1FOO. Measurement of in vivo binding properties of the H1 variants suggest that H1FOO binds chromatin more tightly than somatic linker histones. We provide evidence that both the binding properties of linker histones as well as additional, active processes contribute to the replacement of somatic histones with H1FOO during nuclear transfer. These results provide the first mechanistic insights into the crucial step of linker histone replacement as it occurs during fertilization and somatic cell nuclear transfer.

Similar Articles

Naive and primed pluripotent states

Author(s): Nichols J, Smith A

MicroRNAs: key regulators of stem cells

Author(s): Gangaraju VK, Lin H

Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse

Author(s): Stadtfeld M, Maherali N, Breault DT, Hochedlinger K

Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells

Author(s): Chan EM, Ratanasirintrawoot S, Park IH, Manos PD, Loh YH, et al.

Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution

Author(s): Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, et al.

Epigenetic memory in induced pluripotent stem cells

Author(s): Kim K, Doi A, Wen B, Ng K, Zhao R, et al.

Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells

Author(s): Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, et al.

Immunogenicity of induced pluripotent stem cells

Author(s): Zhao T, Zhang ZN, Rong Z, Xu Y

Nuclear transfer to eggs and oocytes

Author(s): Gurdon JB, Wilmut I

CAF-1 is essential for heterochromatin organization in pluripotent embryonic cells

Author(s): Houlard M, Berlivet S, Probst AV, Quivy JP, Héry P, et al.

Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein

Author(s): Pivot-Pajot C, Caron C, Govin J, Vion A, Rousseaux S, et al.

Unique and independent roles for MLL in adult hematopoietic stem cells and progenitors

Author(s): Jude CD, Climer L, Xu D, Artinger E, Fisher JK, et al.

Histone H4-K16 acetylation controls chromatin structure and protein interactions

Author(s): Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, et al.

Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs

Author(s): Lee G, Papapetrou EP, Kim H, Chambers SM, Tomishima MJ, et al.

Patient-specific induced pluripotent stem-cell models for long-QT syndrome

Author(s): Moretti A, Bellin M, Welling A, Jung CB, Lam JT, et al.

Modelling the long QT syndrome with induced pluripotent stem cells

Author(s): Itzhaki I, Maizels L, Huber I, Zwi-Dantsis L, Caspi O, et al.