Recommended Conferences

Genetic Engineering and Gene Therapy

Paris, France

Human Genetics and Genetic Disorders

Miami, USA

Tissue Engineering and Regenerative Medicine

Chicago, USA
Related Subjects
 

Hydroponic isotope labelling of entire plants (HILEP) for quantitative plant proteomics; an oxidative stress case study

Author(s): Bindschedler LV, Palmblad M, Cramer R

Abstract

Hydroponic isotope labelling of entire plants (HILEP) is a cost-effective method enabling metabolic labelling of whole and mature plants with a stable isotope such as (15)N. By utilising hydroponic media that contain (15)N inorganic salts as the sole nitrogen source, near to 100% (15)N-labelling of proteins can be achieved. In this study, it is shown that HILEP, in combination with mass spectrometry, is suitable for relative protein quantitation of seven week-old Arabidopsis plants submitted to oxidative stress. Protein extracts from pooled (14)N- and (15)N-hydroponically grown plants were fractionated by SDS-PAGE, digested and analysed by liquid chromatography electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS). Proteins were identified and the spectra of (14)N/(15)N peptide pairs were extracted using their m/z chromatographic retention time, isotopic distributions, and the m/z difference between the (14)N and (15)N peptides. Relative amounts were calculated as the ratio of the sum of the peak areas of the two distinct (14)N and (15)N peptide isotope envelopes. Using Mascot and the open source trans-proteomic pipeline (TPP), the data processing was automated for global proteome quantitation down to the isoform level by extracting isoform specific peptides. With this combination of metabolic labelling and mass spectrometry it was possible to show differential protein expression in the apoplast of plants submitted to oxidative stress. Moreover, it was possible to discriminate between differentially expressed isoforms belonging to the same protein family, such as isoforms of xylanases and pathogen-related glucanases (PR 2).

Similar Articles

Effect of climatic factors on powdery mildew caused by Sphaerotheca macularis f

Author(s): Amsalem L, Freeman S, Rav-David D, Nitzani Y, Sztejnberg A, et al.

Biotechnological concepts for improving plant innate immunity

Author(s): Gust AA, Brunner F, Nurnberger T

The genome of woodland strawberry (Fragaria vesca)

Author(s): Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, et al.

An inbred line of the diploid strawberry Fragaria vesca f

Author(s): Slovin JP, Schmitt K, Folta KM

Cytochromes P450 for engineering herbicide tolerance

Author(s): Werck-Reichhart D, Hehn A, Didierjean L

The barley/Blumeria (syn

Author(s): Thordal-Christensen H, Gregersen PL, Collinge DB

The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis

Author(s): Jensen MK, Rung JH, Gregersen PL, Gjetting T, Fuglsang AT, et al.