Recommended Conferences

Genetic Engineering and Gene Therapy

Paris, France

Human Genetics and Genetic Disorders

Miami, USA

Tissue Engineering and Regenerative Medicine

Chicago, USA
Related Subjects

Identification of developmental pluripotency associated 5 expression in human pluripotent stem cells

Author(s): Kim SK, Suh MR, Yoon HS, Lee JB, Oh SK, et al.


Pluripotent embryonic germ cells (EGCs) can be derived from the culture of primordial germ cells (PGCs). However, there are no reports of gonocytes, following the stage of PGC development, becoming stem cell lines. To analyze the gene expression differences between PGCs and gonocytes, we performed cDNA subtractive hybridization with mouse gonads containing either of the two cell populations. We confirmed that developmental pluripotency associated 5 (Dppa5), originally found in mouse embryonic stem cells (ESCs) and mouse embryonic carcinoma cells (ECCs), was strongly expressed in mouse PGCs and the expression was rapidly downregulated during germ cell development. A human sequence homologous to Dppa5 was identified by bioinformatics approaches. Interestingly, human Dppa5 was expressed only in human PGCs, human EGCs, and human ESCs and was not detected in human ECCs. Its expression was downregulated during induced differentiation of human ESCs. These findings confirmed that Dppa5 is specifically and differentially expressed in human cells that have pluripotency. The results strongly suggest that Dppa5 may have an important role in stemness in human ESCs and EGCs and also can be used as a marker of pluripotent stem cells. Human pluripotent stem cells may have their own ways to be pluripotent, as opposed to the much uniform mouse stem cells.

Similar Articles

Naive and primed pluripotent states

Author(s): Nichols J, Smith A

MicroRNAs: key regulators of stem cells

Author(s): Gangaraju VK, Lin H

Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse

Author(s): Stadtfeld M, Maherali N, Breault DT, Hochedlinger K

Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells

Author(s): Chan EM, Ratanasirintrawoot S, Park IH, Manos PD, Loh YH, et al.

Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution

Author(s): Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, et al.

Epigenetic memory in induced pluripotent stem cells

Author(s): Kim K, Doi A, Wen B, Ng K, Zhao R, et al.

Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells

Author(s): Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, et al.

Immunogenicity of induced pluripotent stem cells

Author(s): Zhao T, Zhang ZN, Rong Z, Xu Y

Nuclear transfer to eggs and oocytes

Author(s): Gurdon JB, Wilmut I

CAF-1 is essential for heterochromatin organization in pluripotent embryonic cells

Author(s): Houlard M, Berlivet S, Probst AV, Quivy JP, Héry P, et al.

Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein

Author(s): Pivot-Pajot C, Caron C, Govin J, Vion A, Rousseaux S, et al.

Unique and independent roles for MLL in adult hematopoietic stem cells and progenitors

Author(s): Jude CD, Climer L, Xu D, Artinger E, Fisher JK, et al.

Histone H4-K16 acetylation controls chromatin structure and protein interactions

Author(s): Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, et al.

Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs

Author(s): Lee G, Papapetrou EP, Kim H, Chambers SM, Tomishima MJ, et al.

Patient-specific induced pluripotent stem-cell models for long-QT syndrome

Author(s): Moretti A, Bellin M, Welling A, Jung CB, Lam JT, et al.

Modelling the long QT syndrome with induced pluripotent stem cells

Author(s): Itzhaki I, Maizels L, Huber I, Zwi-Dantsis L, Caspi O, et al.