Inhibition of BET bromodomain proteins as a therapeutic approach in prostate cancer

Author(s): Wyce A,Degenhardt Y, Bai Y, Le B, Korenchuk S, et al.

Abstract

BET (bromodomain and extra-terminal) proteins regulate gene expression through their ability to bind to acetylated chromatin and subsequently activate RNA PolII-driven transcriptional elongation. Small molecule BET inhibitors prevent binding of BET proteins to acetylated histones and inhibit transcriptional activation of BET target genes. BET inhibitors attenuate cell growth and survival in several hematologic cancer models, partially through the down-regulation of the critical oncogene, MYC. We hypothesized that BET inhibitors will regulate MYC expression in solid tumors that frequently over-express MYC. Here we describe the effects of the highly specific BET inhibitor, I-BET762, on MYC expression in prostate cancer models. I-BET762 potently reduced MYC expression in prostate cancer cell lines and a patient-derived tumor model with subsequent inhibition of cell growth and reduction of tumor burden in vivo. Our data suggests that I-BET762 effects are partially driven by MYC down-regulation and underlines the critical importance of additional mechanisms of I-BET762 induced phenotypes.

Similar Articles

Bladder cancer biomarkers: review and update

Author(s): Ghafouri-Fard S,Nekoohesh L, Motevaseli E

Recent advances in the diagnosis and treatment of bladder cancer

Author(s): Cheung G,Sahai A, Billia M, Dasgupta P, Khan MS

Primary bladder preservation treatment for urothelial bladder cancer

Author(s): Biagioli MC, Fernandez DC, Spiess PE, Wilder RB

Prediction of muscle-invasive bladder cancer using urinary proteomics

Author(s): Schiffer E,Vlahou A, Petrolekas A, Stravodimos K, Tauber R, et al.

Making sense of cancer genomic data

Author(s): Chin L, Hahn WC, Getz G, Meyerson M

Principles and methods of integrative genomic analyses in cancer

Author(s): Kristensen VN,Lingjærde OC,Russnes HG,Vollan HK,Frigessi A, et al.

affy--analysis of Affymetrix GeneChip data at the probe level

Author(s): Gautier L, Cope L, Bolstad BM, Irizarry RA

Biomarkers for bladder cancer aggressiveness

Author(s): Frantzi M,Makridakis M, Vlahou A

Gene profiling, biomarkers and pathways characterizing HCV-related hepatocellular carcinoma

Author(s): De Giorgi V, Monaco A, Worchech A, Tornesello M, Izzo F, et al.

The double bromodomain protein Brd2 promotes B cell expansion and mitogenesis

Author(s): Belkina AC, Blanton WP, Nikolajczyk BS, Denis GV

A UPF3-mediated regulatory switch that maintains RNA surveillance

Author(s): Chan WK,Bhalla AD, Le Hir H, Nguyen LS, Huang L, et al.

Targeted therapies in urothelial carcinoma

Author(s): Ghosh M,Brancato SJ, Agarwal PK, Apolo AB

Gene expression profiling and pathway analysis of superficial bladder cancer in rats

Author(s): Arum CJ,Anderssen E, Tømmerås K, Lundgren S, Chen D, et al.

Activation of RAS family genes in urothelial carcinoma

Author(s): Boulalas I,Zaravinos A, Karyotis I, Delakas D, Spandidos DA

Ras mutation cooperates with ß-catenin activation to drive bladder tumourigenesis

Author(s): Ahmad I, Patel R, Liu Y, Singh LB, Taketo MM, et al.

Ras in cancer and developmental diseases

Author(s): Fernández-Medarde A, Santos E