Recommended Conferences

Human Genetics and Genetic Disorders

Miami, USA

Tissue Engineering and Regenerative Medicine

Chicago, USA
Related Subjects
 

Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs

Author(s): Lee G, Papapetrou EP, Kim H, Chambers SM, Tomishima MJ, et al.

Abstract

The isolation of human induced pluripotent stem cells (iPSCs) offers a new strategy for modelling human disease. Recent studies have reported the derivation and differentiation of disease-specific human iPSCs. However, a key challenge in the field is the demonstration of disease-related phenotypes and the ability to model pathogenesis and treatment of disease in iPSCs. Familial dysautonomia (FD) is a rare but fatal peripheral neuropathy, caused by a point mutation in the IKBKAP gene involved in transcriptional elongation. The disease is characterized by the depletion of autonomic and sensory neurons. The specificity to the peripheral nervous system and the mechanism of neuron loss in FD are poorly understood owing to the lack of an appropriate model system. Here we report the derivation of patient-specific FD-iPSCs and the directed differentiation into cells of all three germ layers including peripheral neurons. Gene expression analysis in purified FD-iPSC-derived lineages demonstrates tissue-specific mis-splicing of IKBKAP in vitro. Patient-specific neural crest precursors express particularly low levels of normal IKBKAP transcript, suggesting a mechanism for disease specificity. FD pathogenesis is further characterized by transcriptome analysis and cell-based assays revealing marked defects in neurogenic differentiation and migration behaviour. Furthermore, we use FD-iPSCs for validating the potency of candidate drugs in reversing aberrant splicing and ameliorating neuronal differentiation and migration. Our study illustrates the promise of iPSC technology for gaining new insights into human disease pathogenesis and treatment.

Similar Articles

Naive and primed pluripotent states

Author(s): Nichols J, Smith A

MicroRNAs: key regulators of stem cells

Author(s): Gangaraju VK, Lin H

Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse

Author(s): Stadtfeld M, Maherali N, Breault DT, Hochedlinger K

Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells

Author(s): Chan EM, Ratanasirintrawoot S, Park IH, Manos PD, Loh YH, et al.

Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution

Author(s): Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, et al.

Epigenetic memory in induced pluripotent stem cells

Author(s): Kim K, Doi A, Wen B, Ng K, Zhao R, et al.

Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells

Author(s): Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, et al.

Immunogenicity of induced pluripotent stem cells

Author(s): Zhao T, Zhang ZN, Rong Z, Xu Y

Nuclear transfer to eggs and oocytes

Author(s): Gurdon JB, Wilmut I

CAF-1 is essential for heterochromatin organization in pluripotent embryonic cells

Author(s): Houlard M, Berlivet S, Probst AV, Quivy JP, Héry P, et al.

Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein

Author(s): Pivot-Pajot C, Caron C, Govin J, Vion A, Rousseaux S, et al.

Unique and independent roles for MLL in adult hematopoietic stem cells and progenitors

Author(s): Jude CD, Climer L, Xu D, Artinger E, Fisher JK, et al.

Histone H4-K16 acetylation controls chromatin structure and protein interactions

Author(s): Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, et al.

Patient-specific induced pluripotent stem-cell models for long-QT syndrome

Author(s): Moretti A, Bellin M, Welling A, Jung CB, Lam JT, et al.

Modelling the long QT syndrome with induced pluripotent stem cells

Author(s): Itzhaki I, Maizels L, Huber I, Zwi-Dantsis L, Caspi O, et al.