Recommended Conferences

Genetic Engineering and Gene Therapy

Paris, France

Human Genetics and Genetic Disorders

Miami, USA

Tissue Engineering and Regenerative Medicine

Chicago, USA
Related Subjects

Polycomb group protein-associated chromatin is reproduced in post-mitotic G1 phase and is required for S phase progression

Author(s): Aoto T, Saitoh N, Sakamoto Y, Watanabe S, Nakao M


Polycomb group (PcG) proteins form two distinct complexes, PRC1 and PRC2, to regulate developmental target genes by maintaining the epigenetic state in cells. PRC2 methylates histone H3 at lysine 27 (H3K27), and PRC1 then recognizes methyl-H3K27 to form repressive chromatin. However, it remains unknown how PcG proteins maintain stable and plastic chromatin during cell division. Here we report that PcG-associated chromatin is reproduced in the G(1) phase in post-mitotic cells and is required for subsequent S phase progression. In dividing cells, H3K27 trimethylation (H3K27Me(3)) marked mitotic chromosome arms where PRC2 (Suz12 and Ezh2) co-existed, whereas PRC1 (Bmi1 and Pc2) appeared in distinct foci in the pericentromeric regions. As each PRC complex was increasingly assembled from mitosis to G(1) phase, PRC1 formed H3K27Me(3)-based chromatin intensively during middle and late G(1) phase; this chromatin was highly resistant to in situ nuclease treatment. Thus, the transition from mitosis to G(1) phase is crucial for PcG-mediated chromatin inheritance. Knockdown of Suz12 markedly reduced the amount of H3K27Me(3) on mitotic chromosomes, and as a consequence, PRC1 foci were not fully transmitted to post-mitotic daughter cells. S phase progression was markedly delayed in these Suz12-knockdown cells. The fact that PcG-associated chromatin is reproduced during post-mitotic G(1) phase suggests the possibility that PcG proteins enable their target chromatin to be remodeled in response to stimuli in the G(1) phase.

Similar Articles

Naive and primed pluripotent states

Author(s): Nichols J, Smith A

MicroRNAs: key regulators of stem cells

Author(s): Gangaraju VK, Lin H

Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse

Author(s): Stadtfeld M, Maherali N, Breault DT, Hochedlinger K

Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells

Author(s): Chan EM, Ratanasirintrawoot S, Park IH, Manos PD, Loh YH, et al.

Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution

Author(s): Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, et al.

Epigenetic memory in induced pluripotent stem cells

Author(s): Kim K, Doi A, Wen B, Ng K, Zhao R, et al.

Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells

Author(s): Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, et al.

Immunogenicity of induced pluripotent stem cells

Author(s): Zhao T, Zhang ZN, Rong Z, Xu Y

Nuclear transfer to eggs and oocytes

Author(s): Gurdon JB, Wilmut I

CAF-1 is essential for heterochromatin organization in pluripotent embryonic cells

Author(s): Houlard M, Berlivet S, Probst AV, Quivy JP, Héry P, et al.

Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein

Author(s): Pivot-Pajot C, Caron C, Govin J, Vion A, Rousseaux S, et al.

Unique and independent roles for MLL in adult hematopoietic stem cells and progenitors

Author(s): Jude CD, Climer L, Xu D, Artinger E, Fisher JK, et al.

Histone H4-K16 acetylation controls chromatin structure and protein interactions

Author(s): Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, et al.

Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs

Author(s): Lee G, Papapetrou EP, Kim H, Chambers SM, Tomishima MJ, et al.

Patient-specific induced pluripotent stem-cell models for long-QT syndrome

Author(s): Moretti A, Bellin M, Welling A, Jung CB, Lam JT, et al.

Modelling the long QT syndrome with induced pluripotent stem cells

Author(s): Itzhaki I, Maizels L, Huber I, Zwi-Dantsis L, Caspi O, et al.