Recommended Conferences

Genetic Engineering and Gene Therapy

Paris, France

Human Genetics and Genetic Disorders

Miami, USA

Tissue Engineering and Regenerative Medicine

Chicago, USA
Related Subjects
 

Progress and promise of genome-wide association studies for human complex trait genetics

Author(s): Stranger BE, Stahl EA, Raj T

Abstract

Enormous progress in mapping complex traits in humans has been made in the last 5 yr. There has been early success for prevalent diseases with complex phenotypes. These studies have demonstrated clearly that, while complex traits differ in their underlying genetic architectures, for many common disorders the predominant pattern is that of many loci, individually with small effects on phenotype. For some traits, loci of large effect have been identified. For almost all complex traits studied in humans, the sum of the identified genetic effects comprises only a portion, generally less than half, of the estimated trait heritability. A variety of hypotheses have been proposed to explain why this might be the case, including untested rare variants, and gene-gene and gene-environment interaction. Effort is currently being directed toward implementation of novel analytic approaches and testing rare variants for association with complex traits using imputed variants from the publicly available 1000 Genomes Project resequencing data and from direct resequencing of clinical samples. Through integration with annotations and functional genomic data as well as by in vitro and in vivo experimentation, mapping studies continue to characterize functional variants associated with complex traits and address fundamental issues such as epistasis and pleiotropy. This review focuses primarily on the ways in which genome-wide association studies (GWASs) have revolutionized the field of human quantitative genetics.

Similar Articles

Bladder cancer biomarkers: review and update

Author(s): Ghafouri-Fard S,Nekoohesh L, Motevaseli E

Recent advances in the diagnosis and treatment of bladder cancer

Author(s): Cheung G,Sahai A, Billia M, Dasgupta P, Khan MS

Primary bladder preservation treatment for urothelial bladder cancer

Author(s): Biagioli MC, Fernandez DC, Spiess PE, Wilder RB

Prediction of muscle-invasive bladder cancer using urinary proteomics

Author(s): Schiffer E,Vlahou A, Petrolekas A, Stravodimos K, Tauber R, et al.

Making sense of cancer genomic data

Author(s): Chin L, Hahn WC, Getz G, Meyerson M

Principles and methods of integrative genomic analyses in cancer

Author(s): Kristensen VN,Lingjærde OC,Russnes HG,Vollan HK,Frigessi A, et al.

affy--analysis of Affymetrix GeneChip data at the probe level

Author(s): Gautier L, Cope L, Bolstad BM, Irizarry RA

Biomarkers for bladder cancer aggressiveness

Author(s): Frantzi M,Makridakis M, Vlahou A

Gene profiling, biomarkers and pathways characterizing HCV-related hepatocellular carcinoma

Author(s): De Giorgi V, Monaco A, Worchech A, Tornesello M, Izzo F, et al.

The double bromodomain protein Brd2 promotes B cell expansion and mitogenesis

Author(s): Belkina AC, Blanton WP, Nikolajczyk BS, Denis GV

Inhibition of BET bromodomain proteins as a therapeutic approach in prostate cancer

Author(s): Wyce A,Degenhardt Y, Bai Y, Le B, Korenchuk S, et al.

A UPF3-mediated regulatory switch that maintains RNA surveillance

Author(s): Chan WK,Bhalla AD, Le Hir H, Nguyen LS, Huang L, et al.

Targeted therapies in urothelial carcinoma

Author(s): Ghosh M,Brancato SJ, Agarwal PK, Apolo AB

Gene expression profiling and pathway analysis of superficial bladder cancer in rats

Author(s): Arum CJ,Anderssen E, Tømmerås K, Lundgren S, Chen D, et al.

Activation of RAS family genes in urothelial carcinoma

Author(s): Boulalas I,Zaravinos A, Karyotis I, Delakas D, Spandidos DA

Ras mutation cooperates with ß-catenin activation to drive bladder tumourigenesis

Author(s): Ahmad I, Patel R, Liu Y, Singh LB, Taketo MM, et al.

Ras in cancer and developmental diseases

Author(s): Fernández-Medarde A, Santos E