Recommended Conferences

Genetic Engineering and Gene Therapy

Paris, France

Human Genetics and Genetic Disorders

Miami, USA

Tissue Engineering and Regenerative Medicine

Chicago, USA
Related Subjects

Rho guanine nucleotide exchange factor is an NFL mRNA destabilizing factor that forms cytoplasmic inclusions in amyotrophic lateral sclerosis

Author(s): Droppelmann CA, Keller BA, Campos-Melo D, Volkening K, Strong MJ


Amyotrophic lateral sclerosis (ALS) is an adult-onset progressive disorder of unknown etiology characterized by the selective degeneration of motor neurons. Recent evidence supports the hypothesis that alterations in RNA metabolism in motor neurons can explain the development of protein inclusions, including neurofilamentous aggregates, observed in this pathology. In mice, p190RhoGEF, a guanine nucleotide exchange factor, is involved in neurofilament protein aggregation in an RNA-triggered transgenic model of motor neuron disease. Here, we observed that rho guanine nucleotide exchange factor (RGNEF), the human homologue of p190RhoGEF, binds low molecular weight neurofilament mRNA and affects its stability via 3′ untranslated region destabilization. We observed that the overexpression of RGNEF in a stable cell line significantly decreased the level of low molecular weight neurofilament protein. Furthermore, we observed RGNEF cytoplasmic inclusions in ALS spinal motor neurons that colocalized with ubiquitin, p62/sequestosome-1, and TAR (trans-active regulatory) DNA-binding protein 43 (TDP-43). Our results provide further evidence that RNA metabolism pathways are integral to ALS pathology. This is also the first described link between ALS and an RNA binding protein with aggregate formation that is also a central cell signaling pathway molecule.

Similar Articles

Rat hippocampal neurons in dispersed cell culture

Author(s): Banker GA, Cowan WM

C1q induction and global complement pathway activation do not contribute to ALS toxicity in mutant SOD1 mice

Author(s): Lobsiger CS, Boillee S, Pozniak C, Khan AM, McAlonis-Downes M, et al.

A dramatic increase of C1q protein in the CNS during normal aging

Author(s): Stephan AH, Madison DV, Mateos JM, Fraser DA, Lovelett EA, et al.

When, where, and how much? Expression of the Kv3

Author(s): Gan L, Kaczmarek LK


Author(s): Yasuda T, Cuny H, Adams DJ

A-type K+ channels encoded by Kv4

Author(s): Carrasquillo Y, Burkhalter A, Nerbonne JM

Functional specialization of the axon initial segment by isoform-specific sodium channel targeting

Author(s): Boiko T, van Wart A, Caldwell JH, Levinson SR, Trimmer JS, et al.

Role of axonal NaV1

Author(s): Royeck M, Horstmann MT, Remy S, Reitze M, Yaari Y, et al.

The role of the Rho GTPases in neuronal development

Author(s): GovekEE, Newey SE, van Aelst L

EphB-mediated degradation of the RhoA GEF Ephexin5 relieves a developmental brake on excitatory synapse formation

Author(s): Margolis SS, Salogiannis J, Lipton DM, Mandel-Brehm C, Wills ZP, et al.

Potential role of culture mediums for successful isolation and neuronal differentiation of amniotic fluid stem cells

Author(s): Orciani M, Emanuelli M, Martino C, Pugnaloni A, Tranquilli AL, et al.