Recommended Conferences

Genetic Engineering and Gene Therapy

Paris, France

Human Genetics and Genetic Disorders

Miami, USA

Tissue Engineering and Regenerative Medicine

Chicago, USA
Related Subjects

Serum-free B27/neurobasal medium supports differentiated growth of neurons from the striatum, substantia nigra, septum, cerebral cortex, cerebellum, and dentate gyrus

Author(s): Brewer GJ


Two fundamental questions about neuron cell culture were addressed. Can one serum-free medium that was developed for optimum growth of hippocampal neurons support the growth of neurons from other regions of the brain? Is the region specific state of differentiation maintained in culture? To answer these questions, we isolated neurons from six other rat brain regions, placed them in culture in B27/NeurobasalTM defined medium, and analyzed their morphology and growth dependence on cell density after 4 days in culture. Neuronal identity was confirmed by immunostaining with antibodies to neurofilament 200. Neurons from each brain region maintained distinctive morphologies in culture in the virtual absence of glia. Cells isolated from embryonic day 18 cerebral cortex by digestion with papain showed the same high survival as hippocampal neurons, e.g., 70% survival for cells plated at 160/mm2. At this age and density, neurons from the septum showed slightly lower survival, 45%. Survival of dentate granule neurons from postnatal day four brains was 30-40%, significantly lower, and relatively independent of plating density. This suggests an absence of dependence on trophic factors or contact for dentate granule neurons. Growth of cerebellar granule neurons isolated from postnatal day 7, 8, or 9 brains in B27/Neurobasal was compared to growth in BME/10% serum. Viability in serum-free medium at 4 days was much better than that in serum, did not require KCI elevated to 25 mM, and occurred without substantial growth of glia. Cerebellar granule neurons plated at 1,280 cells/mm2 were maintained in culture for three weeks with 17 of the original cell density surviving. Survival of cells isolated from embryonic day 18 substantia nigra was 50% at 160 cells/mm2 after 4 days, similar to that of striatum, but slightly less than hippocampal neuron survival. The dopaminergic phenotype of the substantia nigral neurons was maintained over 2 weeks in culture as judged by immunoreactivity with antibodies to tyrosine hydroxylase. During this time, immunoreactivity was found in the processes as they grew out from the soma. Together, these studies suggest that B27/Neurobasal will be a useful medium for maintaining the differentiated growth of neurons from many brain regions. Potential applications of a common growth medium for different neurons are discussed. © 1995 Wiley-Liss, Inc.

Similar Articles

Rat hippocampal neurons in dispersed cell culture

Author(s): Banker GA, Cowan WM

C1q induction and global complement pathway activation do not contribute to ALS toxicity in mutant SOD1 mice

Author(s): Lobsiger CS, Boillee S, Pozniak C, Khan AM, McAlonis-Downes M, et al.

A dramatic increase of C1q protein in the CNS during normal aging

Author(s): Stephan AH, Madison DV, Mateos JM, Fraser DA, Lovelett EA, et al.

When, where, and how much? Expression of the Kv3

Author(s): Gan L, Kaczmarek LK


Author(s): Yasuda T, Cuny H, Adams DJ

A-type K+ channels encoded by Kv4

Author(s): Carrasquillo Y, Burkhalter A, Nerbonne JM

Functional specialization of the axon initial segment by isoform-specific sodium channel targeting

Author(s): Boiko T, van Wart A, Caldwell JH, Levinson SR, Trimmer JS, et al.

Role of axonal NaV1

Author(s): Royeck M, Horstmann MT, Remy S, Reitze M, Yaari Y, et al.

The role of the Rho GTPases in neuronal development

Author(s): GovekEE, Newey SE, van Aelst L

EphB-mediated degradation of the RhoA GEF Ephexin5 relieves a developmental brake on excitatory synapse formation

Author(s): Margolis SS, Salogiannis J, Lipton DM, Mandel-Brehm C, Wills ZP, et al.

Potential role of culture mediums for successful isolation and neuronal differentiation of amniotic fluid stem cells

Author(s): Orciani M, Emanuelli M, Martino C, Pugnaloni A, Tranquilli AL, et al.