Recommended Conferences

Human Genetics and Genetic Disorders

Miami, USA

Tissue Engineering and Regenerative Medicine

Chicago, USA
Related Subjects

Survival and growth of hippocampal neurons in defined medium at low density: Advantages of a sandwich culture technique or low oxygen

Author(s): Brewer GJ, Cotman CW


The study of development and plasticity of hippocampal circuitry would greatly benefit from methods which allow the long-term culture of neurons at low density under precisely defined culture conditions. We report that isolated hippocampal neurons from embryonic day 18 rats can be cultured for several weeks at low densities which permits the determination of individual connections. A serum-free medium was modified from the formulation of Romijn to include the biological anti-oxidants vitamin E, glutathione, pyruvate, catalase and superoxide dismutase. Neuronal survival of 80% and neuritogenesis greatly exceeded that seen in serum-based cultures. It appeared that vitamins E, A and linolenic acid promoted neuritogenesis. The beneficial effects of the antioxidants suggested a toxic role of oxygen. To directly test this, cultures were incubated in reduced oxygen (9%) and compared to those in the normal 19.7% oxygen (95% air). After 3 days in culture, neurons with processes in 9% oxygen were more than double those in normal oxygen. Neuronal survival and neurite growth could be improved if the cells were grown on a substrate-coated surface covered with a coverslip. Under this condition, cells show a ring of growth between the center and the edge of the coverslip. In 9% oxygen, this ring was closer to the edge of the coverslip than in normal oxygen. The coverslip did not serve as an additional substrate for attachment since it left the neurons attached to the original substrate. However, removal of the coverslip leads to cell death within 24 h, suggesting that the cells had been exposed to a toxic factor. Variations in glial cell content (<10%), pH, andpCO2 were demonstrated to be unlikely explanations of the higher survival. These results suggest that growth in a diffusion-limited space, reduction of oxygen concentration to physiological levels and control of toxic oxidation with physiological antioxidants can greatly improve the survival and neuritogenesis of isolated hippocampal neurons in primary culture. Previous article in issue

Similar Articles

Rat hippocampal neurons in dispersed cell culture

Author(s): Banker GA, Cowan WM

C1q induction and global complement pathway activation do not contribute to ALS toxicity in mutant SOD1 mice

Author(s): Lobsiger CS, Boillee S, Pozniak C, Khan AM, McAlonis-Downes M, et al.

A dramatic increase of C1q protein in the CNS during normal aging

Author(s): Stephan AH, Madison DV, Mateos JM, Fraser DA, Lovelett EA, et al.

When, where, and how much? Expression of the Kv3

Author(s): Gan L, Kaczmarek LK


Author(s): Yasuda T, Cuny H, Adams DJ

A-type K+ channels encoded by Kv4

Author(s): Carrasquillo Y, Burkhalter A, Nerbonne JM

Functional specialization of the axon initial segment by isoform-specific sodium channel targeting

Author(s): Boiko T, van Wart A, Caldwell JH, Levinson SR, Trimmer JS, et al.

Role of axonal NaV1

Author(s): Royeck M, Horstmann MT, Remy S, Reitze M, Yaari Y, et al.

The role of the Rho GTPases in neuronal development

Author(s): GovekEE, Newey SE, van Aelst L

EphB-mediated degradation of the RhoA GEF Ephexin5 relieves a developmental brake on excitatory synapse formation

Author(s): Margolis SS, Salogiannis J, Lipton DM, Mandel-Brehm C, Wills ZP, et al.

Potential role of culture mediums for successful isolation and neuronal differentiation of amniotic fluid stem cells

Author(s): Orciani M, Emanuelli M, Martino C, Pugnaloni A, Tranquilli AL, et al.