Recommended Conferences

Genetic Engineering and Gene Therapy

Paris, France

Human Genetics and Genetic Disorders

Miami, USA

Tissue Engineering and Regenerative Medicine

Chicago, USA
Related Subjects
 

The genome of pear (PyrusbretschneideriRehd)

Author(s): Wu J, WangZ, ShiZ, Zhang S, Ming R, et al.

Abstract

The draft genome of the pear (Pyrus bretschneideri) using a combination of BAC-by-BAC and next-generation sequencing is reported. A 512.0-Mb sequence corresponding to 97.1% of the estimated genome size of this highly heterozygous species is assembled with 194× coverage. High-density genetic maps comprising 2005 SNP markers anchored 75.5% of the sequence to all 17 chromosomes. The pear genome encodes 42,812 protein-coding genes, and of these, ~28.5% encode multiple isoforms. Repetitive sequences of 271.9 Mb in length, accounting for 53.1% of the pear genome, are identified. Simulation of eudicots to the ancestor of Rosaceae has reconstructed nine ancestral chromosomes. Pear and apple diverged from each other ~5.4-21.5 million years ago, and a recent whole-genome duplication (WGD) event must have occurred 30-45 MYA prior to their divergence, but following divergence from strawberry. When compared with the apple genome sequence, size differences between the apple and pear genomes are confirmed mainly due to the presence of repetitive sequences predominantly contributed by transposable elements (TEs), while genic regions are similar in both species. Genes critical for self-incompatibility, lignified stone cells (a unique feature of pear fruit), sorbitol metabolism, and volatile compounds of fruit have also been identified. Multiple candidate SFB genes appear as tandem repeats in the S-locus region of pear; while lignin synthesis-related gene family expansion and highly expressed gene families of HCT, C3'H, and CCOMT contribute to high accumulation of both G-lignin and S-lignin. Moreover, alpha-linolenic acid metabolism is a key pathway for aroma in pear fruit.

Similar Articles

Emerging knowledge from genome sequencing of crop species

Author(s): Barabaschi D, Guerra D, Lacrima K, Laino P, Michelotti V, et al.

A high quality draft consensus sequenceofthegenomeofaheterozygousgrapevinevariety

Author(s): Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, et al.

The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus)

Author(s): Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, et al.

Characterization of mango (Mangiferaindica L

Author(s): Azim KM, Khan IA, Zhang Y

The genome of the domesticatedapple (Malus x domesticaBorkh

Author(s): Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, et al.

The draft genomeof sweet orange (Citrus sinensis)

Author(s): Xu Q, Chen LL, Ruan X, Chen D, Zhu A, e t al.

De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera)

Author(s): Al-Dous EK, George B, Al-Mahmoud ME, Al-Jaber MY, Wang H,et al.

Genome sequence of the date palm Phoenix dactylifera L

Author(s): Ibrahim S, Al-MssallemSongnian H, Xiaowei Z, Qiang L, Wanfei L, et al.

The Draft Genome Sequence of European Pear (Pyruscommunis L

Author(s): Chagné D, Crowhurst RN, Pindo M, Thrimawithana A, Deng C, et al.