When, where, and how much? Expression of the Kv3

Author(s): Gan L, Kaczmarek LK


The Kv3.1 potassium channel gene is expressed in neurons that fire action potentials at high frequencies. Neurons that express this gene, such as auditory brain stem neurons, have high-threshold voltage-dependent potassium currents that activate and deactivate unusually rapidly, and whose characteristics match those of the Kv3.1 subunit expressed heterologously. The level of Kv3.1 expression in neurons is regulated during development and by environmental stimuli. Pharmacological and computer modeling studies indicate that changes in the level of this channel alter the ability of a neuron to follow synaptic inputs at high frequencies. To understand the transcriptional mechanisms that control Kv3.1 expression, an initial characterization of the primary promoter for the Kv3.1 gene was carried out. This review summarizes current knowledge regarding Kv3.1 gene transcription and the roles of upstream regulatory elements in conferring cell-type specificity and long-term regulation by extrinsic factors. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 69–79, 1998

Similar Articles

Rat hippocampal neurons in dispersed cell culture

Author(s): Banker GA, Cowan WM

C1q induction and global complement pathway activation do not contribute to ALS toxicity in mutant SOD1 mice

Author(s): Lobsiger CS, Boillee S, Pozniak C, Khan AM, McAlonis-Downes M, et al.

A dramatic increase of C1q protein in the CNS during normal aging

Author(s): Stephan AH, Madison DV, Mateos JM, Fraser DA, Lovelett EA, et al.


Author(s): Yasuda T, Cuny H, Adams DJ

A-type K+ channels encoded by Kv4

Author(s): Carrasquillo Y, Burkhalter A, Nerbonne JM

Functional specialization of the axon initial segment by isoform-specific sodium channel targeting

Author(s): Boiko T, van Wart A, Caldwell JH, Levinson SR, Trimmer JS, et al.

Role of axonal NaV1

Author(s): Royeck M, Horstmann MT, Remy S, Reitze M, Yaari Y, et al.

The role of the Rho GTPases in neuronal development

Author(s): GovekEE, Newey SE, van Aelst L

EphB-mediated degradation of the RhoA GEF Ephexin5 relieves a developmental brake on excitatory synapse formation

Author(s): Margolis SS, Salogiannis J, Lipton DM, Mandel-Brehm C, Wills ZP, et al.

Potential role of culture mediums for successful isolation and neuronal differentiation of amniotic fluid stem cells

Author(s): Orciani M, Emanuelli M, Martino C, Pugnaloni A, Tranquilli AL, et al.