Recommended Conferences

Human Genetics and Genetic Disorders

Miami, USA

Tissue Engineering and Regenerative Medicine

Chicago, USA
Related Subjects
 

X-inactivation and X-reactivation: epigenetic hallmarks of mammalian reproduction and pluripotent stem cells

Author(s): Payer B, Lee JT, Namekawa SH

Abstract

X-chromosome inactivation is an epigenetic hallmark of mammalian development. Chromosome-wide regulation of the X-chromosome is essential in embryonic and germ cell development. In the male germline, the X-chromosome goes through meiotic sex chromosome inactivation, and the chromosome-wide silencing is maintained from meiosis into spermatids before the transmission to female embryos. In early female mouse embryos, X-inactivation is imprinted to occur on the paternal X-chromosome, representing the epigenetic programs acquired in both parental germlines. Recent advances revealed that the inactive X-chromosome in both females and males can be dissected into two elements: repeat elements versus unique coding genes. The inactive paternal X in female preimplantation embryos is reactivated in the inner cell mass of blastocysts in order to subsequently allow the random form of X-inactivation in the female embryo, by which both Xs have an equal chance of being inactivated. X-chromosome reactivation is regulated by pluripotency factors and also occurs in early female germ cells and in pluripotent stem cells, where X-reactivation is a stringent marker of naive ground state pluripotency. Here we summarize recent progress in the study of X-inactivation and X-reactivation during mammalian reproduction and development as well as in pluripotent stem cells.

Similar Articles

Naive and primed pluripotent states

Author(s): Nichols J, Smith A

MicroRNAs: key regulators of stem cells

Author(s): Gangaraju VK, Lin H

Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse

Author(s): Stadtfeld M, Maherali N, Breault DT, Hochedlinger K

Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells

Author(s): Chan EM, Ratanasirintrawoot S, Park IH, Manos PD, Loh YH, et al.

Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution

Author(s): Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, et al.

Epigenetic memory in induced pluripotent stem cells

Author(s): Kim K, Doi A, Wen B, Ng K, Zhao R, et al.

Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells

Author(s): Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, et al.

Immunogenicity of induced pluripotent stem cells

Author(s): Zhao T, Zhang ZN, Rong Z, Xu Y

Nuclear transfer to eggs and oocytes

Author(s): Gurdon JB, Wilmut I

CAF-1 is essential for heterochromatin organization in pluripotent embryonic cells

Author(s): Houlard M, Berlivet S, Probst AV, Quivy JP, Héry P, et al.

Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein

Author(s): Pivot-Pajot C, Caron C, Govin J, Vion A, Rousseaux S, et al.

Unique and independent roles for MLL in adult hematopoietic stem cells and progenitors

Author(s): Jude CD, Climer L, Xu D, Artinger E, Fisher JK, et al.

Histone H4-K16 acetylation controls chromatin structure and protein interactions

Author(s): Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, et al.

Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs

Author(s): Lee G, Papapetrou EP, Kim H, Chambers SM, Tomishima MJ, et al.

Patient-specific induced pluripotent stem-cell models for long-QT syndrome

Author(s): Moretti A, Bellin M, Welling A, Jung CB, Lam JT, et al.

Modelling the long QT syndrome with induced pluripotent stem cells

Author(s): Itzhaki I, Maizels L, Huber I, Zwi-Dantsis L, Caspi O, et al.